VALIDATION REPORT

SYMMETRIC ZON GREEN

Product code: S5024/S5048

Document no: S50[V10]

Date: 09 July 2024

Symmetric ZON Lateral Flow kit

INDEX

1. Immunoassay Specifications	Page
1.1 General Specifications	3
1.2 Specificity & Cross-reactivity	3
2. Validation	
2.1 Determination of the Limit of Detection LOD and the Limit of Quantification LOQ	3
2.2 Determination of Recovery (%)	3
i. Determination of Recovery (%) at the LOQ level	3
ii. Determination of Recovery (%) for all matrices at two different levels	4
2.3 Reproducibility	10
2.4 Performance Evaluation	10
3. References	10

Symmetric ZON Lateral Flow kit

1. Immunoassay Specifications

1.1 General Specifications

The LOD and LOQ of the 0-800ppb method are 24ppb and 35ppb respectively. (Type I, II & III, Table 1)

Matrices:

Type I: Corn, Corn flour, Barley, Oats, Soy flour, Malt, Brown rice, Buck-wheat, Millet, Dried Brassica Integrifolia, Dried Gai Choy, Dried Palm.

Type II: Wheat, Wheat flour.

Type III: White rice.

1.2 Specificity & Cross-reactivity

The cross-reaction of the anti-ZON antibody with Zearalenone, α -zearalenol, β -zearalenol, Zearalanone, α -zearalanol is 100, 85, 47, 96, 80 and 82% respectively.

2. Validation

2.1 Determination of the Limit of Detection LOD and the Limit of Quantification LOQ

The LOD and LOQ were defined as 2 x Standard Deviation and 3 x Standard Deviation. For the determination of LOD and LOQ, two ZON-free maize powder samples A & B (<35ppb) were used (Table 1).

Table 1. ZON-free maize powder samples for the determination of LOD and LOQ (Type I, II & III)

	Concentration (ppb)	
Sample (n=8)	MEAN	SD
Maize Powder A	25.32	11.52
Maize Powder B	12.10	11.88
	SUM	
MEAN	18.71	
SD	11.7	

It was found that calculated LOD and LOQ is 24ppb and 35ppb, respectively.

2.2 Determination of Recovery (%)

Spike Protocol

All the samples were spiked according to the United States Department of Agriculture (USDA), Agricultural Marketing Service, GIPSA's Federal Grain Inspection Service (FGIS) protocol. More particularly, all spike experiments were carried out by spiking the individual pre-weighted test portion with a concentration adjusted solution to maintain the spiking volume at $100~\mu$ L. Liquid spike prepared in 100% methanol was added with a positive displacement syringe and dried for 30 minutes at 37° C prior to extraction, unless stated otherwise. A known amount of Aflatoxin ZON is added to the solid sample to be tested using a standard solution. The dried spiked sample was then extracted and analyzed according to the manual S5024/S5048 V19 chapter 9.

i. Determination of Recovery (%) at the LOQ level

For the determination of Recovery at LOQ level (Table 2) ZON-free maize powder B was used as blank and it has been spiked with ZON Trilogy standard solution (TSL-401).

Table 2. Recovery at LOQ level. Maize Powder B was spiked with ZON.

Sample (n=8)	Concentration (ppb)	Spike (ppb)	Recovery (%)	
	34.74	35	99.25	Average 35ppb
MAIZE POWDER B			3.71	SD
			3.74	CV%

ii. Determination of Recovery (%) for all matrices at two different levels

For the determination of Recovery at two different levels (100 and 300 ppb), different ZON-free matrices were spiked with ZON Trilogy standard solution (TSL-401) (Tables 3-17).

Table 3. Recovery of Barley sample at two different levels.

Spike 100 ppb		
	96.8	Average
Barley (n=8)	5.30	SD
-	5.48	CV(%)
	96.8	Recovery (%)
Spike 300 ppb		
	289.62	Average
Barley (n=8)	9.68	SD
	3.34	CV(%)
	96.54	Recovery (%)
	96.67	Mean Recovery (%)

Table 4. Recovery of Brown Rice sample at two different levels.

Spike 100 ppb		
	92.59	Average
Brown Rice (n=8)	5.47	SD
	5.91	CV(%)
	92.59	Recovery (%)
Spike 300 ppb		
	270.03	Average
Proven Bico (n=9)	9.83	SD
Brown Rice (n=8)	3.64	CV(%)
	90.01	Recovery (%)
	91.30	Mean Recovery (%)

Table 5. Recovery of Buckwheat sample at two different levels.

Spike 100 ppb			
	99.3	Average	
Buckwheat (n=8)	5.84	SD	
	5.88	CV(%)	
	99.3	Recovery (%)	
	Spike 300 ppb		
	295.47	Average	
Buckwheat (n=8)	8.69	SD	
	2,94	CV(%)	
	98.49	Recovery (%)	
	98.9	Mean Recovery (%)	

Table 6. Recovery of Corn sample at two different levels.

	Spike 100 ppb		
	88.56	Average	
Corn (n=8)	4.97	SD	
	5.61	CV(%)	
	88.56	Recovery (%)	
	Spike 300 ppb		
	266.67	Average	
Corn (n=8)	7.51	SD	
	2.87	CV(%)	
	88.89	Recovery (%)	
	88.73	Mean Recovery (%)	

Table 7. Recovery of Corn Flour sample at two different levels.

Spike 100 ppb		
	94.2	Average
Corn Flour(n=8)	5.42	SD
	5.75	CV(%)
	94.2	Recovery (%)
Spike 300 ppb		
	271.04	Average
Corn Flour (n=8)	6.78	SD
	2.50	CV(%)
	90.34	Recovery (%)
	92.27	Mean Recovery (%)

Table 8. Recovery of Dried Brassica Integrifolia sample at two different levels.

Spike 100 ppb		
	81.96	Average
Dried Brassica Intergrofolia(n=8)	4.43	SD
	5.41	CV(%)
	81.96	Recovery (%)
Spike 300 ppb		
	268	Average
Dried Brassica Intergrofolia(n=8)	12.10	SD
Dried Brassica intergrotolia(n=8)	4.51	CV(%)
	89.33	Recovery (%)
	85.65	Mean Recovery (%)

Table 9. Recovery of Dried Gai Choy sample at two different levels.

Spike 100 ppb		
	106.3	Average
Dried Gai Choy (n=8)	6.23	SD
	5.86	CV(%)
	106.3	Recovery (%)
Spike 300 ppb		
	295.79	Average
Dried Gai Choy (n=8)	11.01	SD
	3.72	CV(%)
	98.6	Recovery (%)
	102.45	Mean Recovery (%)

Table 10. Recovery of Dried Palm sample at two different levels.

Spike 100 ppb		
	87.61	Average
Dried Palm (n=8)	4.32	SD
	4.93	CV(%)
	87.61	Recovery (%)
Spike 300 ppb		
	280.45	Average
Dried Palm (n=8)	10.92	SD
	3.89	CV(%)
	93.48	Recovery (%)
	90.55	Mean Recovery (%)

Table 11. Recovery of Malt sample at two different levels.

Spike 100 ppb		
	93.3	Average
Malt (n=8)	5.21	SD
	5.58	CV(%)
	93.3	Recovery (%)
Spike 300 ppb		
	276	Average
Malt (n=8)	9.58	SD
	3.47	CV(%)
	92	Recovery (%)
	92.65	Mean Recovery (%)

Table 12. Recovery of Millet sample at two different levels.

Spike 100 ppb				
	87.72	Average		
Millet (n=8)	4.44	SD		
	5.06	CV(%)		
	87.72	Recovery (%)		
	Spike 300 ppb			
	291.31	Average		
Millet (n=8)	10.79	SD		
	3.70	CV(%)		
	97.1	Recovery (%)		
	92.41	Mean Recovery (%)		

Table 13. Recovery of Oat sample at two different levels.

Spike 100 ppb				
Oats (n=8)	98.2	Average		
	5.56	SD		
	5.66	CV(%)		
	98.2	Recovery (%)		
	Spike 300 ppb			
Oats (n=8)	269.89	Average		
	12.61	SD		
	4.67	CV(%)		
	89.96	Recovery (%)		
	94.08	Mean Recovery (%)		

Table 14. Recovery of Soy Flour sample at two different levels.

Spike 100 ppb			
Soy Flour (n=8)	94.8	Average	
	4.97	SD	
	5.24	CV(%)	
	94.8	Recovery (%)	
	Spike 300 ppb		
Soy Flour (n=8)	291.91	Average	
	11.23	SD	
	3.85	CV(%)	
	97.30	Recovery (%)	
	96.05	Mean Recovery (%)	

Table 15. Recovery of Wheat sample at two different levels.

Spike 100 ppb				
Wheat (n=8)	92.29	Average		
	5.42	SD		
	5.87	CV(%)		
	92.29	Recovery (%)		
	Spike 300 ppb			
Wheat (n=8)	299.63	Average		
	12.31	SD		
	4.11	CV(%)		
	99.88	Recovery (%)		
	96.09	Mean Recovery (%)		

Table 16. Recovery of Wheat Flour sample at two different levels.

Spike 100 ppb				
Wheat Flour(n=8)	87.77	Average		
	4.92	SD		
	5.61	CV(%)		
	87.77	Recovery (%)		
	Spike 300 ppb			
Wheat Flour(n=8)	269.85	Average		
	8.56	SD		
	3.17	CV(%)		
	89.95	Recovery (%)		
	88.86	Mean Recovery (%)		

Table 17. Recovery of White Rice sample at two different levels.

Spike 100 ppb			
White Rice (n=8)	94.71	Average	
	5.63	SD	
	5.94	CV(%)	
	94.71	Recovery (%)	
Spike 300 ppb			
White Rice (n=8)	287.65	Average	
	10.16	SD	
	3.53	CV(%)	
	95.88	Recovery (%)	
	95.30	Mean Recovery (%)	

Table 18. Mean Recovery (%) of all ground matrices

Matrix	Mean Recovery (%)
Barley	96.67
Brown Rice	91.30
Buckwheat	98.9
Corn	88.73
Corn Flour	92.27
Dried Brassica Integrifolia	85.65
Dried Gai Choy	102.45
Dried Palm	90.55
Malt	92.65
Millet	92.41
Oats	94.08
Soy Flour	96.05
Wheat	96.09
Wheat Flour	88.86
White Rice	95.30
MEAN	93.46

2.3 Reproducibility

The coefficients of variation of reproducibility of the concentrations (ppb) (Table 19) of two different samples ran eight times in 8 different tests are reported:

Table 19. Coefficients of Variation of the concentration (ppb) of two different samples ran in eight different tests.

	Concentration (ppb)		
Sample (n=8)	MEAN	CV(%)	
FAPAS MAIZE T04439QC	97.1	4.76	
FAPAS MAIZE T04411QC	108.55	3.89	
FAPAS MAIZE T22177QC	65.63	5.53	

2.4 Performance Evaluation

i. Reference Materials

Table 20. Recovery on samples prepared by FAPAS.

Reference material	Lot number	Certified value (μg/kg)	Uncertainty (μ,g/kg)	Result (μg/kg)	Recovery (%)
FAPAS MAIZE T04439QC	90	94.3	41.5	97.1	103
FAPAS MAIZE T04411QC	1	105	46	108.55	103.3
FAPAS MAIZE T22177QC	62	75.6	33.3	65.6	86.8

3. References

- [1] Ntantasios AN. Arampatzis A. Voulgari D. Badra K. Papageorgiou G. Athanasiou SD and Gotsopoulos M. Innovative lateral flow method for the quantification of Aflatoxin M1. IDF DAIRY SUMMIT. 29 October-03 November 2017. Belfast. Northern Ireland. UK.
- [2] Papageorgiou G. Ntantasios AN. Voulgari D. Badra K. Gotsopoulos M and Athanasiou SD. An innovative symmetric lateral flow system for the quantification of Aflatoxin M1. 8th International Symposium on RAFA. 7-10 November 2017. Prague. Czech Republic
- [3] M. Gkanas. Ch. Chatzoglou. K. Badra. Ch. Tsaridou. A.N. Ntantasios. G. Papageorgiou and S.D. Athanasiou. Uso di solventi non organici nell'analisi delle micotossine. Seminario AIA Laboratori e 200 ARAL SATA. 30-31 January 2018. Milan. Italy.
- [4] Drakouli S, Skliris A, Voulgari DL, Angeli E, Ntantasios AN, Papageorgiou G and Athanassiou SD, Estrazione unica in acqua, per la quantificazione di nove Micotossine usando la tecnologia Symmetric lateral flow. VI Congresso Nazionale: Micotossine e Tossine Vegetali nella filiera agro-alimentare, 10-12 June, 2019 Rome, Italy.
- [5] Tsaridou C, Badra K, Natsaridis N, Nikolopoulou E, Ntantasios AN, Papageorgiou G and Athanassiou SD, Estrazione unica in acqua, per la quantificazione di nove micotossine usando la tecnologia Bio-Shield Elisa. VI Congresso Nazionale: Micotossine e Tossine Vegetali nella filiera agro-alimentare,10-12 June, 2019 Rome, Italy.
- [6] Drakouli S, Skliris A, Tziortziou M, Iliopoulou S, Natsaridis N, Papageorgiou G, Ntantasios AN and Athanassiou SD, Quantification of all Mycotoxins, using Symmetric lateral flow technology and one step multitoxin aqueous extraction. The World Mycotoxin Forum and the IUPAC International symposium on Mycotoxins, 14-16 October 2019, Belfast, Northern Ireland, UK.
- [7] Skliris A, Drakouli S, Tziortziou M, Voulgari DL, Iliopoulou S, Papageorgiou G, Zaralis K and Athanassiou SD, Symmetric lateral flow technology with one step Multitoxin aqueous extraction for the quantification of all Mycotoxins. 9th International Symposium on Recent Advances in Food Analysis, November 5-8, 2019, Prague, Czech Republic

Antonios Ntantasios

Managing Director

"PROGNOSIS BIOTECH"
PROGNOSIS BIOTECH"
PROGNOSIS BIOTECH ADMINISTRAÇÃO
PROGNOSIS BIOTECH ADMINISTRAÇÃO
PROGNOSIS ADMINISTRAÇÃO
PROGNOSIS
BIOTECH

www.prognosis-biotech.com
E: info@prognosis-biotech.com

T: +30 2410 623922 Farsalon 153 | 41335 Larissa, Greece