VALIDATION REPORT SYMMETRIC

FUMONISIN GREEN

Product code: S7024/S7048 Document no: S70[V12] Date: 09 July 2024

Symmetric FUMONISIN Lateral Flow kit

INDEX

1. Immunoassay Specifications	Page
1.1 General Specifications	3
1.2 Specificity & Cross-reactivity	3
2. Validation	
2.1 Determination of the Limit of Detection LOD and the Limit of Quantification LOQ	3
2.2 Determination of Recovery (%)	3
i. Determination of Recovery (%) at the LOQ level	3
ii. Determination of Recovery (%) for all matrices at two different levels	4
2.3 Reproducibility	13
2.4 Performance Evaluation	13
3. References	13

Symmetric FUMONISIN Lateral Flow kit

1. Immunoassay Specifications

2.1 General Specifications

- The LOD of the method is 100 ppb (Table 1)
- The LOQ of the method is 150 ppb (Table 1)
- Matrices: Barley, Beer Residue, Brown Rice, Buckwheat, Corn, Corn Flour, DDGS, Dried Brassica Integrifolia, Dried Gai Choy, Dried Palm, Malt, Millet, Oats, Pasta, Pop Corn, Rice Flour, Soybeans, Soy bean meal, Sunflower meal, Wheat, Wheat Flour, White Rice.

1.2 Specificity & Cross-reactivity

The cross-reaction of the anti-Fumonisin antibody with FB1, FB2 and FB3 is 100, 65 and 48% respectively.

2. Validation

2.1 Determination of the Limit of Detection LOD and the Limit of Quantification LOQ

For the determination of LOD (2xSD) and LOQ (3xSD). two Fumonisin-free maize powder samples (<150 ppb) were used (Table 1).

Table 1. Fumonisin-free maize powder samples for the determination of LOD and LOQ

	Concentration (ppb)	
Sample (n=8)	MEAN	SD
Maize Powder A	7.16	49.70
Maize Powder B	5.75	49.81
	SUM	
MEAN	6.46	
SD	49.76	

The LOD and LOQ were defined as 2 x Standard Deviation and 3 x Standard Deviation of the Fumonisin-free maize powder blank samples, respectively. It was found that calculated LOD and LOQ is 100 ppb and 150 ppb, respectively.

2.2 Determination of Recovery (%)

Spike Protocol

All the samples were spiked according to the United States Department of Agriculture (USDA). Agricultural Marketing Service. GIPSA's Federal Grain Inspection Service (FGIS) protocol. More particularly, all spike experiments were carried out by spiking the individual pre-weighted test portion with a concentration adjusted solution to maintain the spiking volume at $100 \, \mu$ L. Liquid spike prepared in 100% methanol was added with a positive displacement syringe and dried for 30 minutes at 37° C prior to extraction, unless stated otherwise. A known amount of Aflatoxin Fumonisin is added to the solid sample to be tested using a standard solution. The dried spiked sample was then extracted and analyzed according to the manual $57024/57048 \, V23$ chapter 9.

i. Determination of Recovery (%) at the LOQ level

For the determination of Recovery at LOQ level (Table 2) Fumonisin-free maize powder B was used as blank and it has been spiked with Fumonisin Trilogy standard solution (TSL-204).

Table 2. Recovery at LOQ level. Maize Powder B was spiked with Fumonisin.

Sample (n=8)	Concentration (ppb)	Spike (ppb)	Recovery (%)	
	145.92	150.00	97.28	Average 150 ppb
MAIZE POWDER B			15.2	SD
			15.6	CV%

ii. Determination of Recovery (%) for all matrices at two different levels

For the determination of Recovery at two different levels 450 and 1500 ppb), different Fumonisin-free matrices were spiked with Fumonisin Trilogy standard solution (TSL-204) (Tables 3-24).

Table 3. Recovery of Barley sample at two different levels.

Spike 450 ppb			
	438.75	Average	
Barley (n=8)	9.93	SD	
	2.26	CV(%)	
	97.5	Recovery (%)	
	Spike 1500 ppb		
	1457.31	Average	
Bowley (m=0)	45.12	SD	
Barley (n=8)	3.09	CV(%)	
	97.15	Recovery (%)	
	97.32	Mean Recovery (%)	

Table 4. Recovery of Beer Residue sample at two different levels.

Spike 450 ppb			
	463.75	Average	
Beer Residue (n=8)	5.16	SD	
	1.11	CV(%)	
	103.05	Recovery (%)	
	Spike 1500 ppb		
	1492.12	Average	
Beer Residue (n=8)	43.1	SD	
beer Residue (II-8)	2.88	CV(%)	
	99.47	Recovery (%)	
	101.26	Mean Recovery (%)	

Table 5. Recovery of Brown Rice sample at two different levels.

Spike 450 ppb			
	463.25	Average	
Brown Rice (n=8)	8.88	SD	
	1.9	CV(%)	
	102.9	Recovery (%)	
	Spike 1500 ppb		
	1461	Average	
Proug Bico (n=9)	67.22	SD	
Brown Rice (n=8)	4.6	CV(%)	
	97.4	Recovery (%)	
	100.15	Mean Recovery (%)	

Table 6. Recovery of Buckwheat sample at two different levels.

Spike 450 ppb			
	461.3	Average	
Buckwheat (n=8)	10.23	SD	
	2.21	CV(%)	
	102.51	Recovery (%)	
	Spike 1500 ppb		
	1463.5	Average	
Buckwheat (n=8)	79.21	SD	
	3.22	CV(%)	
	97.56	Recovery (%)	
	100.03	Mean Recovery (%)	

Table 7. Recovery of Corn sample at two different levels.

Spike 450 ppb			
	461.25	Average	
Corn (n=8)	25.52	SD	
	5.53	CV(%)	
	102.5	Recovery (%)	
	Spike 1500 ppb		
	1479.51	Average	
Corn (n=9)	75.81	SD	
Corn (n=8)	5.1	CV(%)	
	98.63	Recovery (%)	
	100.56	Mean Recovery (%)	

Table 8. Recovery of Corn flour sample at two different levels.

Spike 450 ppb			
	481	Average	
Corn flour (n=8)	9.08	SD	
	1.88	CV(%)	
	106.88	Recovery (%)	
	Spike 1500 ppb		
	1565.2	Average	
Corn flour (n=8)	75.21	SD	
	4.8	CV(%)	
	104.3	Recovery (%)	
	105.59	Mean Recovery (%)	

Table 9. Recovery of DDGS sample at two different levels.

Spike 450 ppb			
	451.75	Average	
Corn flour (n=8)	6.68	SD	
	1.48	CV(%)	
	100.4	Recovery (%)	
	Spike 1500 ppb		
	1492.12	Average	
Court flows (n=0)	57.11	SD	
Corn flour (n=8)	3.82	CV(%)	
	99.47	Recovery (%)	
	99.93	Mean Recovery (%)	

Table 10. Recovery of Dried Brassica Intergrifolia sample at two different levels.

Spike 450 ppb		
	383.87	Average
Dried Brassica Intergrifolia (n=8)	20.23	SD
	5.27	CV(%)
	85.3	Recovery (%)
Spike 1500 ppb		
	1439.5	Average
Dried Brassica Intergrifolia (n=8)	65.83	SD
	4.57	CV(%)
	95.96	Recovery (%)
	90.63	Mean Recovery (%)

Table 11. Recovery of Dried Gai Choy sample at two different levels.

Spike 450 ppb		
	386.12	Average
Dried Gai Choy (n=8)	20.24	SD
	5.24	CV(%)
	85.80	Recovery (%)
	Spike 1500 ppb	
	1475.2	Average
Dried Gai Choy (n=8)	54.15	SD
Dried Gai Choy (n=8)	3.67	CV(%)
	97.14	Recovery (%)
	91.47	Mean Recovery (%)

Table 12. Recovery of Dried Palm sample at two different levels.

Spike 450 ppb		
	388.12	Average
Dried Palm (n=8)	19.2	SD
	4.95	CV(%)
	86.25	Recovery (%)
	Spike 1500 ppb	
	1448.33	Average
Dried Palm (n=8)	57.1	SD
	3.94	CV(%)
	96.55	Recovery (%)
	91.4	Mean Recovery (%)

Table 13. Recovery of Malt sample at two different levels.

Spike 450 ppb			
	447.94	Average	
Malt (n=0)	21.05	SD	
Malt (n=8)	4.7	CV(%)	
	99.54	Recovery (%)	
	Spike 1500 ppb		
Malt (n=8)	1556.1	Average	
	46.32	SD	
	2.97	CV(%)	
	103.74	Recovery (%)	
	101.64	Mean Recovery (%)	

Table 14. Recovery of Millet sample at two different levels.

Spike 450 ppb			
	433.87	Average	
Millet(n=8)	7.68	SD	
	1.77	CV(%)	
	96.4	Recovery (%)	
	Spike 1500 ppb		
	1458.55	Average	
Millet (n=8)	61.23	SD	
	4.19	CV(%)	
	97.23	Recovery (%)	
	96.81	Mean Recovery (%)	

Table 15. Recovery of Oats sample at two different levels.

Spike 450 ppb		
	506.7	Average
Oats (n=8)	4.6	SD
	0.9	CV(%)
	112.6	Recovery (%)
Spike 1500 ppb		
	1582.1	Average
Oats (n=8)	88.92	SD
	5.6	CV(%)
	105.4	Recovery (%)
	110.5	Mean Recovery (%)

Table 16. Recovery of Pasta sample at two different levels.

Spike 450 ppb			
	471	Average	
Pasta (n=8)	8	SD	
	1.7	CV(%)	
	104.66	Recovery (%)	
	Spike 1500 ppb		
Pasta (n=8)	1445.21	Average	
	55.56	SD	
	3.84	CV(%)	
	96.34	Recovery (%)	
	100.5	Mean Recovery (%)	

Table 17. Recovery of Pop corn sample at two different levels.

Spike 450 ppb		
	477	Average
Pop Corn (n=8)	8.86	SD
	1.86	CV(%)
	106	Recovery (%)
	Spike 1500 ppb	
	1472	Average
Pop Corn (n=8)	55	SD
	3.7	CV(%)
	98.13	Recovery (%)
	103.41	Mean Recovery (%)

Table 18. Recovery of Rice Flour sample at two different levels.

Spike 450 ppb		
	406.9	Average
Rice Flour (n=8)	14.5	SD
	3.56	CV(%)
	90.4	Recovery (%)
	Spike 1500 ppb	
	1437.2	Average
Rice Flour (n=8)	45.82	SD
	3.18	CV(%)
	95.81	Recovery (%)
	93.1	Mean Recovery (%)

Table 19. Recovery of Soybeans sample at two different levels.

Spike 450 ppb		
	424.12	Average
Soybeans (n=8)	7.86	SD
	1.85	CV(%)
	94.25	Recovery (%)
	Spike 1500 ppb	
Soybeans (n=8)	1445.14	Average
	55.35	SD
	38.13	CV(%)
	96.34	Recovery (%)
	95.3	Mean Recovery (%)

Table 20. Recovery of Soybean Meal sample at two different levels.

Spike 450 ppb		
	430.25	Average
Soybean Meal (n=8)	10.64	SD
	2.47	CV(%)
	95.6	Recovery (%)
	Spike 1500 ppb	
	1486.2	Average
Soybean Meal (n=8)	87.22	SD
	5.86	CV(%)
	99.08	Recovery (%)
	97.34	Mean Recovery (%)

Table 21. Recovery of Sunflower Meal sample at two different levels.

Spike 450 ppb		
	454.87	Average
Sunflower Meal (n=8)	11.67	SD
	2.56	CV(%)
	101.1	Recovery (%)
	Spike 1500 ppb	
	1512.28	Average
Sunflower Meal (n=8)	65.57	SD
	4.33	CV(%)
	100.8	Recovery (%)
	100.95	Mean Recovery (%)

Table 22. Recovery of Wheat sample at two different levels.

Spike 450 ppb		
	434.6	Average
Wheat (n=8)	9.64	SD
	2.22	CV(%)
	96.58	Recovery (%)
	Spike 1500 ppb	
	1488.3	Average
M/hoot (m=0)	54.2	SD
Wheat (n=8)	3.64	CV(%)
	99.22	Recovery (%)
	97.9	Mean Recovery (%)

Table 23. Recovery of Wheat Flour sample at two different levels.

Spike 450 ppb			
	475.75	Average	
Wheat Flour (n=8)	9.86	SD	
	2.07	CV(%)	
	105.7	Recovery (%)	
	Spike 1500 ppb		
	1487.9	Average	
Wheat Flour (n=8)	63.12	SD	
	4.24	CV(%)	
	99.19	Recovery (%)	
	102.44	Mean Recovery (%)	

Table 24. Recovery of White Rice sample at two different levels.

Spike 450 ppb					
White Rice (n=8)	468	Average			
	6.44	SD			
	1.37	CV(%)			
	96.15	Recovery (%)			
Spike 1500 ppb					
White Rice (n=8)	1462.1	Average			
	57.8	SD			
	3.95	CV(%)			
	97.47	Recovery (%)			
	96.81	Mean Recovery (%)			

Table 25. Mean Recovery (%) of all ground matrices

Matrix	Mean Recovery (%)		
Barley	97.32		
Beer Residue	101.26		
Brow Rice	100.15		
Buckwheat	100.03		
Corn	100.56		
Corn Flour	105.59		
DDGS	99.93		
Dried Brassica Integrifolia	90.63		
Dried Gai Choy	91.47		
Dried Palm	91.4		
Malt	101.64		
Millet	96.81		
Oats	110.5		
Pasta	100.5		
Pop Corn	103.41		
Rice Flour	93.1		
Soybeans	95.3		
Soybean Meal	97.34		
Sunflower Meal	100.95		
Wheat	97.9		
Wheat Flour	102.44		
White Rice	96.81		
MEAN	98.86		

3.3 Reproducibility

The coefficients of variation of reproducibility of the concentrations (ppb) (Table 26) of two different samples ran eight times in 8 different tests are reported:

Table 26. Coefficients of Variation of the concentration (ppb) of two different samples ran in eight different tests.

	Concentration (ppm)			
Sample (n=8)	MEAN	CV(%)		
FAPAS MAIZE T04411QC	965.45	3.95		
FAPAS MAIZE T04384QC	719.5	1.72		

3.4 Performance Evaluation

i. Reference Materials

Table 27. Recovery on samples prepared by FAPAS.

Reference material	Lot number	Certified value (µg/kg)	Uncertain- ty (μg/kg)		Recovery (%)
FAPAS Maize T04411QC	1	962	310	965.45	100.36
FAPAS Maize T04384QC	87	752	251	719.5	104.5

4. References

- [1] Ntantasios AN. Arampatzis A. Voulgari D. Badra K. Papageorgiou G. Athanasiou SD and Gotsopoulos M. Innovative lateral flow method for the quantification of Aflatoxin M1. IDF DAIRY SUMMIT. 29 October-03 November 2017. Belfast. Northern Ireland LIK
- [2] Papageorgiou G. Ntantasios AN. Voulgari D. Badra K. Gotsopoulos M and Athanasiou SD. An innovative symmetric lateral flow system for the quantification of Aflatoxin M1. 8th International Symposium on RAFA. 7-10 November 2017. Prague. Czech Republic.
- [3] M. Gkanas. Ch. Chatzoglou. K. Badra. Ch. Tsaridou. A.N. Ntantasios. G. Papageorgiou and S.D. Athanasiou. Uso di solventi non organici nell'analisi delle micotossine. Seminario AIA Laboratori e 200 ARAL SATA. 30-31 January 2018. Milan. Italy.
- [4] Drakouli S, Skliris A, Voulgari DL, Angeli E, Ntantasios AN, Papageorgiou G and Athanassiou SD, Estrazione unica in acqua, per la quantificazione di nove Micotossine usando la tecnologia Symmetric lateral flow. VI Congresso Nazionale: Micotossine e Tossine Vegetali nella filiera agro-alimentare,10-12 June, 2019 Rome, Italy.
- [5] 5)Tsaridou C, Badra K, Natsaridis N, Nikolopoulou E, Ntantasios AN, Papageorgiou G and Athanassiou SD, Estrazione unica in acqua, per la quantificazione di nove micotossine usando la tecnologia Bio-Shield Elisa. VI Congresso Nazionale: Micotossine e Tossine Vegetali nella filiera agro-alimentare,10-12 June, 2019 Rome, Italy.
- [6] 6)Drakouli S, Skliris A, Tziortziou M, Iliopoulou S, Natsaridis N, Papageorgiou G, Ntantasios AN and Athanassiou SD, Quantification of all Mycotoxins, using Symmetric lateral flow technology and one step multitoxin aqueous extraction. The World Mycotoxin Forum and the IUPAC International symposium on Mycotoxins, 14-16 October 2019, Belfast, Northern Ireland,
- [7] 7)Skliris A, Drakouli S, Tziortziou M, Voulgari DL, Iliopoulou S, Papageorgiou G, Zaralis K and Athanassiou SD, Symmetric lateral flow technology with one step Multitoxin aqueous extraction for the quantification of all Mycotoxins. 9th International Symposium on Recent Advances in Food Analysis, November 5-8, 2019, Prague, Czech Republic

Antonios Ntantasios

Managing Director

PROSNONIA BIOTECH*
PROSNONIA BIOTECH*
PROSNONIA BIOTECH*
PROSNONIA BIOTECH*
PROSNONIA BIOTECH*
PROSNONIA BIOTECH*
PROGNOSIS

PROGNOSIS
BIOTECH*

www.prognosis-biotech.com
E: info@prognosis-biotech.com

T: +30 2410 623922 Farsalon 153 | 41335 Larissa, Greece